Ultrasound probe - List of Manufacturers, Suppliers, Companies and Products

Ultrasound probe Product List

1~10 item / All 10 items

Displayed results

Ultrasonic probe oscillation method (consulting support for control know-how)

Ultrasonic probe-based sweep oscillation system - a technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed a new control technology for ultrasonic probes using original technology. This is an application technology for measurement systems using the new ultrasonic probe. We provide consulting services for the development, manufacturing, and control methods of dedicated ultrasonic probes tailored to specific purposes. Regarding the characteristics of piezoelectric elements, we develop and manufacture original ultrasonic probes based on analyses that consider elastic wave propagation and various vibration states (modes). For measurements, the probes can be connected to an oscilloscope for use. For oscillation, they can be connected to a function generator. By performing feedback analysis of sound pressure measurement data, it becomes possible to quantify and evaluate nonlinear ultrasonic phenomena (acoustic streaming) and cavitation effects. The ultrasonic probes are "made-to-order" based on the confirmed intended use.

  • Non-destructive testing
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Surface inspection technology using oscillation control of ultrasonic probes.

Utilizing nonlinear phenomena related to megahertz ultrasonic propagation states.

The Ultrasonic System Research Institute has developed a new surface inspection technology using megahertz ultrasonic oscillation based on its track record of analyzing ultrasonic data propagating on the surface of target objects. This method applies measurement and analysis technology for "sound pressure and vibration" controlled by ultrasonic probe oscillation. We provide consulting and evaluation technology explanations tailored to the development of ultrasonic probes that match the target object's surface vibration modes. This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that correspond to the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the target object. In particular, it serves as a fundamental technology for surface inspection of substrate components and preliminary evaluation of precision cleaning parts, utilizing response characteristics derived from combinations of oscillation and reception, establishing new evaluation parameters for ultrasonic vibration. By constructing and modifying a logical model based on measurements, analyses, and evaluations of the dynamic characteristics of ultrasonic surface elastic wave propagation phenomena, we have enabled effective use tailored to the objectives (evaluation).

  • Analysis and prediction system
  • Other measuring instruments
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Megahertz ultrasound oscillation control device using an original ultrasonic probe.

Consulting support for the development of ultrasonic devices based on technology that controls surface acoustic waves through surface treatment of ultrasonic probe piezoelectric elements.

The Ultrasonic System Research Institute manufactures and sells ultrasonic systems utilizing the following original products: 1) Sound Pressure Measurement and Analysis System (Ultrasonic Tester) 2) Megahertz Ultrasonic Oscillation Control Probe 3) Ultrasonic Oscillation System (20 MHz type) Features of the Sound Pressure Measurement and Analysis System: Ultrasonic Tester 200 MHz type * Measurement (analysis) frequency range Specification: 0.01 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Includes software for time-series data analysis Overview Specifications of the Ultrasonic Probe Measurement range: 0.01 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Propagation range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation equipment example: Function generator Propagation Characteristics of the Ultrasonic Probe 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Other measuring instruments
  • Non-destructive testing
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

A new surface inspection technology using megahertz ultrasonic oscillation.

Surface inspection using ultrasonic oscillation from ultrasonic probes (oscillating type, measuring type, resonant type, nonlinear type).

The Ultrasonic System Research Institute has developed a new component inspection technology using megahertz ultrasonic oscillation, based on its track record of analyzing ultrasonic data propagating on the surface of target objects. This method applies the measurement and analysis technology of "sound pressure and vibration" through the control of original ultrasonic probe oscillation. We provide consulting and explanations of ultrasonic evaluation technology by developing ultrasonic probes tailored to the purpose (vibration modes propagating on the surface of target objects). This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the target object. In particular, this fundamental technology serves as a new evaluation parameter for ultrasonic vibration, utilized in surface inspection of substrate components and preliminary evaluation of precision cleaning parts, based on the response characteristics derived from combinations of oscillation and reception. By measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to surface elastic wave propagation phenomena, we have enabled effective utilization tailored to the purpose (evaluation) by constructing and modifying logical models.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization technology for resonance phenomena and nonlinear phenomena using ultrasound.

- Experimental and Research Cycle of Abstract Algebra Models and Ultrasonic Phenomena - Technology for Achieving Dynamic Control of Ultrasound

The Ultrasonic System Research Institute has developed a technology for ultrasonic <dynamic control> that optimizes the interaction of ultrasonic vibrations based on various analysis results of ultrasonic propagation states using an original ultrasonic system and an abstract algebra model. Note: The control of resonance phenomena (low harmonics) and nonlinear phenomena (high harmonics) is achieved by setting oscillation control conditions based on a logical model. In contrast to existing control technologies, this technique establishes and implements optimal control states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.) through new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools. This is a method and technology that can be applied immediately, and we offer it as consulting services (there is an increasing track record of precision cleaning and stirring at the nano level). Note: Using original technology (ultrasonic tester), we measure, analyze, and evaluate dynamic changes in the propagation state of water tanks, transducers, target objects, and tools, among others. (Parameters: power spectrum, autocorrelation, bispectrum, power contribution rate, impulse response characteristics, etc.)

  • Scientific Calculation and Simulation Software
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Consulting services for "vibration measurement technology" using ultrasound.

We have developed a completely new "vibration measurement technology" using our original product (ultrasonic tester).

The Ultrasonic System Research Institute (located in Hachioji, Tokyo) has developed a completely new vibration measurement technology using its original product (ultrasonic tester). The ultrasonic sound pressure measurement analysis technology developed so far applies "measurement, analysis, and control" techniques related to the nonlinear phenomena of ultrasound. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasound propagating on surfaces, we have developed a technology that can measure, analyze, and evaluate vibration states from low frequencies (0.1 Hz) to high frequencies (200 MHz). This technology enables new countermeasures based on new vibration phenomena concerning vibrations and noise from buildings and roads, equipment, devices, walls, pipes, desks, handrails, and the moment of metal melting during welding, as well as instantaneous vibrations during machining. This is a new method and technology, and various application cases have developed from the analysis results obtained so far. In particular, continuous data collection for a standard measurement time of 72 hours is possible, allowing measurement of very low-frequency vibrations and irregularly fluctuating vibrations.

  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Maintenance technology for equipment utilizing ultrasonic "vibration measurement technology."

A completely new vibration measurement technology using original products (ultrasonic testers).

The Ultrasonic System Research Institute has developed a completely new <vibration measurement technology> using its original product (ultrasonic tester). The ultrasonic sound pressure measurement analysis technology developed so far applies the "measurement, analysis, and control" technology related to the nonlinear phenomena of ultrasound. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasound propagating on surfaces, we have developed technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.001 Hz) to high frequencies (700 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... as well as the vibrations at the moment of metal melting during welding and instantaneous vibrations during machining, we have made it possible to respond with vibration control and management based on the measurement and analysis of new vibration phenomena. This is a new method and technology, and various application cases have developed from the analysis results so far. In particular, continuous data collection for a standard measurement time of 72 hours is possible, allowing measurement of low-frequency vibrations and irregularly fluctuating vibrations (maximum measurement can be overwritten over a continuous period of 14 days).

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasound and Surface Elastic Waves (Development Technology of Original Ultrasound System)

Original ultrasonic probe's "oscillation and control" technology

The Ultrasonic System Research Institute has developed applied technology that utilizes surface acoustic waves through ultrasonic control. By combining ultrasound and surface acoustic waves, we achieve dynamic control of ultrasonic propagation. The key point is the ability to efficiently control nonlinear phenomena caused by surface acoustic waves. As specific technologies, we have developed system technologies that control nonlinear phenomena (bisectional spectrum) resulting from the interaction of ultrasound with water tanks and tools, tailored to specific purposes (cleaning, stirring, stress relief, inspection, etc.). As a result of utilizing measurement and analysis techniques for ultrasonic propagation states, we have confirmed the realization of harmonic control and the ability to adjust nonlinear phenomena. The know-how lies in confirming and responding to the acoustic characteristics of the system (measurement, analysis, evaluation).

  • Scientific Calculation and Simulation Software
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Consulting services for the manufacturing and evaluation technology of ultrasonic probes.

Technology for evaluating the dynamic characteristics of ultrasonic probes.

The Ultrasonic System Research Institute has developed manufacturing and evaluation technology for ultrasonic probes that can control ultrasonic propagation states from 500 Hz to 900 MHz, based on the classification of ultrasonic propagation characteristics (acoustic characteristics). We can manufacture and develop original ultrasonic oscillation control probes tailored to specific purposes. This technology is available for consulting. If you are interested, please contact us via email. Propagation characteristics of ultrasonic probes: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (interaction between oscillation voltage and received voltage: analysis of power contribution rate) Note: "R" is a free statistical processing language and environment. - autocor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Providing technology for the manufacturing and development of ultrasonic sound pressure measurement probes.

Ultrasonic oscillation control probe enabling control of resonance phenomena and nonlinear phenomena - Surface modification technology (relaxation of surface residual stress) through nonlinear oscillation control.

The Ultrasonic System Research Institute provides consulting services for the manufacturing and development technology of an ultrasonic probe and sound pressure measurement analysis system that can measure ultrasonic propagation conditions from 0.1 Hz to 900 MHz. Ultrasonic sound pressure measurement analysis system (Ultrasonic tester: standard system) 1. Contents - One dedicated probe for measuring sound pressure of ultrasonic cleaners - One general-purpose ultrasonic measurement probe - One oscilloscope set - One set of analysis software, manuals, and various installation sets 2. Features (for standard specifications) * Measurement (analysis) frequency range Specification: from 0.1 Hz to 10 MHz * Ultrasonic oscillation Specification: from 1 Hz to 100 kHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours is possible * Simultaneous measurement of any two points * Measurement results displayed in graphs * Analysis software for time-series data included This is a measurement system using ultrasonic probes. The ultrasonic probe is attached to the target object for oscillation and measurement. The measured data is analyzed considering position and state, as well as elastic waves, to detect various acoustic performances.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration